Abstract
Abstract Many turbulent flow simulations require the use of hybrid methods because LES methods are computationally too expensive and RANS methods are not sufficiently accurate. We consider a recently suggested hybrid RANS-LES model that has a sound theoretical basis: it is systematically derived from a realizable stochastic turbulence model. The model is applied to turbulent swirling and nonswirling jet flow simulations. The results are shown to be in a very good agreement with available experimental data of nonswirling and mildly swirling jet flows. Compared to commonly applied other hybrid RANS-LES methods, our RANS-LES model does not seem to suffer from the ’modeled-stress depletion’ problem that is observed in DES and IDDES simulations of nonswirling jet flows, and it performs better than segregated RANS-LES models. The results presented contribute to a better physical understanding of swirling jet flows through an explanation of conditions for the onset and the mechanism of vortex breakdown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Sciences and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.