Abstract

We describe a single-level quantum dot in contact with two leads as a nanoscale finite-time thermodynamic machine. The dot is driven by an external stochastic force that switches its energy between two values. In the isothermal regime, it can operate as a rechargeable battery by generating an electric current against the applied bias in response to the stochastic driving and then redelivering work in the reverse cycle. This behavior is reminiscent of the Parrondo paradox. If there is a thermal gradient the device can function as a work-generating thermal engine or as a refrigerator that extracts heat from the cold reservoir via the work input of the stochastic driving. The efficiency of the machine at maximum power output is investigated for each mode of operation, and universal features are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call