Abstract

A generalization of the stochastic wave function method to quantum master equations which are not in Lindblad form is developed. The proposed stochastic unravelling is based on a description of the reduced system in a doubled Hilbert space and it is shown, that this method is capable of simulating quantum master equations with negative transition rates. Non-Markovian effects in the reduced systems dynamics can be treated within this approach by employing the time-convolutionless projection operator technique. This ansatz yields a systematic perturbative expansion of the reduced systems dynamics in the coupling strength. Several examples such as the damped Jaynes Cummings model and the spontaneous decay of a two-level system into a photonic band gap are discussed. The power as well as the limitations of the method are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.