Abstract
This paper studies controlled systems governed by Ito's stochastic differential equations in which control variables are allowed to enter both drift and diffusion terms. A new verification theorem is derived within the framework of viscosity solutions without involving any derivatives of the value functions. This theorem is shown to have wider applicability than the restrictive classical verification theorems, which require the associated dynamic programming equations to have smooth solutions. Based on the new verification result, optimal stochastic feedback controls are obtained by maximizing the generalized Hamiltonians over both the control regions and the superdifferentials of the value functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.