Abstract

This paper presents a continuous and discrete Lagrangian theory for stochastic Hamiltonian systems on manifolds, akin to the Ornstein–Uhlenbeck theory of Brownian motion in a force field. The main result is to derive governing SDEs for such systems from a critical point of a stochastic action. Using this result, the paper derives Langevin-type equations for constrained mechanical systems and implements a stochastic analogue of Lagrangian reduction. These are easy consequences of the fact that the stochastic action is intrinsically defined. Stochastic variational integrators (SVIs) are developed using a discrete variational principle. The paper shows that the discrete flow of an SVI is almost surely symplectic and in the presence of symmetry almost surely momentum-map preserving. A first-order mean-squared convergent SVI for mechanical systems on Lie groups is introduced. As an application of the theory, SVIs are exhibited for multiple, randomly forced and torqued rigid bodies interacting via a potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.