Abstract

Fluctuations in the time interval between two consecutive R-waves of electrocardiogram during normal sinus rhythm may result from irregularities in the autonomic drive of the pacemaking sinoatrial node (SAN). We use a biophysically detailed mathematical model of the action potentials of rabbit SAN to quantify the effects of fluctuations in acetylcholine (ACh) on the pacemaker activity of the SAN and its variability. Fluctuations in ACh concentration model the effect of stochastic activity in the vagal parasympathetic fibers that innervate the SAN and produce varying rates of depolarization during the pacemaker potential, leading to fluctuations in cycle length (CL). Both the estimated maximal Lyapunov exponent and the noise limit of the resultant sequence of fluctuating CLs suggest chaotic dynamics. Apparently chaotic heart rate variability (HRV) seen in sinus rhythm can be produced by stochastic modulation of the SAN. The identification of HRV data as chaotic by use of time series measures such as a positive maximal Lyapunov exponent or positive noise limit requires both caution and a quantitative, predictive mechanistic model that is fully deterministic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.