Abstract

A method for stochastic unraveling of general time-local quantum master equations (QME) which involve the reduced density operator at time t only is proposed. The present kind of jump algorithm enables a numerically efficient treatment of QMEs that are not of Lindblad form. So it opens large fields of application for stochastic methods. The unraveling can be achieved by allowing for trajectories with negative weight. We present results for the quantum Brownian motion and the Redfield QMEs as test examples. The algorithm can also unravel non-Markovian QMEs when they are in a time-local form like in the time-convolutionless formalism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.