Abstract

This paper develops a dynamic switching model, with a random walk and a stationary regime, where the time spent in the random walk regime is endogeneously predetermined. More precisely, we assume that the process is recursively defined by Yt = μ + Yt−1 + et, with stochastic probability πrw(Yt−1), Yt = μ + et, with stochastic probability 1 − πrw(Yt−1), where (et) is a strong white noise and πrw is a nondecreasing function. Then, the dynamics of the process (Yt), its marginal distribution, and the distribution of the time spent in the unit root regime depend on the pattern of random walk intensity πrw and on the noise distribution F. Moreover, we study the links between the endogeneous switching regime and the degree of persistence of the process (Yt).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.