Abstract

We present a stochastic trust-region model-based framework in which its radius is related to the probabilistic models. Especially, we propose a specific algorithm, termed STRME, in which the trust-region radius depends linearly on the latest model gradient. The complexity of STRME method in non-convex, convex and strongly convex settings has all been analyzed, which matches the existing algorithms based on probabilistic properties. In addition, several numerical experiments are carried out to reveal the benefits of the proposed methods compared to the existing stochastic trust-region methods and other relevant stochastic gradient methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.