Abstract

For mobile robots to operate autonomously in general environments, perception is required in the form of a dense metric map. For this purpose, we present the stochastic triangular mesh (STM) mapping technique: a 2.5-D representation of the surface of the environment using a continuous mesh of triangular surface elements, where each surface element models the mean plane and roughness of the underlying surface. In contrast to existing mapping techniques, an STM map models the structure of the environment by ensuring a continuous model, while also being able to be incrementally updated with linear computational cost in the number of measurements. We reduce the effect of uncertainty in the robot pose (position and orientation) by using landmark-relative submaps. The uncertainty in the measurements and robot pose are accounted for by the use of Bayesian inference techniques during the map update. We demonstrate that an STM map can be used with sensors that generate point measurements, such as stochastic triangular mesh (LiDAR) sensors and stereo cameras. We show that an STM map is a more accurate model than the only comparable online surface mapping technique – a standard elevation map – and we also provide qualitative results on practical datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.