Abstract

We are interested in a scalable, flexible, and modular methodology, for modeling and performance analysis of stochastic discrete-event systems (SDES). In this sense, we propose a modular approach for timing non-markovian SDES expressed as a parallel composition of modules that interacts with each other through events. We show how general distribution for event lifetimes can be implemented systematically by coupling timing modules to the system model. As a result, this coupling mechanism preserves modularity, leading to a compact markovian model expressed in terms of flexible modules. Therefore the methodology allows us to write the whole SDES model as a composition of the system model and the timing one, giving flexibility and scalability in modeling design, as we can modify the modules individually according to the designer’s interests. In addition, from the whole markovian SDES model, we show how to perform the model analysis through the analytic approach, as well as through Monte Carlo computer simulation. As an application, we present a numerical example of computing the abandonment rate for a service network with general service time employing both analytical and computer-simulation models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.