Abstract
A comparison has been made between the deterministic and stochastic (master equation) formulation of nonlinear chemical rate processes with multiple stationary states. We have shown, via two specific examples of chemical reaction schemes, that the master equations have quasi-stationary state solutions which agree with the various initial condition dependent equilibrium solutions of the deterministic equations. The presence of fluctuations in the stochastic formulation leads to true equilibrium solutions, i.e. solutions which are independent of initial conditions as t → ∞. We show that the stochastic formulation leads to two distinct time scales for relaxation. The mean time for the reaction system to reach the quasi-stationary states from any initial state is of O ( N 0) where N is a measure of the size of the reaction system. The mean time for relaxation from a quasi-stationary state to the true equilibrium state is O (e N ). The results obtained from the stochastic formulation as regards the number and location of the quasi-stationary states are in complete agreement with the deterministic results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.