Abstract
This paper demonstrates a systematic derivation of high order numerical methods from stochastic Taylor expansion for solving stochastic delay differential equations (SDDEs) with a constant time lag, r > 0 . The stochastic Taylor expansion of SDDEs is truncated at certain terms to achieve the order of convergence of numerical methods for SDDEs. Three different numerical schemes of Euler method, Milstein scheme and stochastic Taylor method of order 1.5 have been derived. The performance of Euler method, Milstein scheme and stochastic Taylor method of order 1.5 are investigated in a simulation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.