Abstract

Stochastic Taylor expansions of the expectation of functionals applied to diffusion processes which are solutions of stochastic differential equation systems are introduced. Taylor formulas w.r.t. increments of the time are presented for both, Itô and Stratonovich stochastic differential equation systems with multi-dimensional Wiener processes. Due to the very complex formulas arising for higher order expansions, an advantageous graphical representation by coloured trees is developed. The convergence of truncated formulas is analyzed and estimates for the truncation error are calculated. Finally, the stochastic Taylor formulas based on coloured trees turn out to be a generalization of the deterministic Taylor formulas using plain trees as recommended by Butcher for the solutions of ordinary differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.