Abstract

In this paper, stochastic synchronization is studied for complex networks with delayed coupling and mixed impulses. Mixed impulses are composed of desynchronizing and synchronizing impulses. The delayed coupling term involves transmission delay and self-feedback delay. By using the average impulsive interval approach and the comparison principle, several conditions are derived to guarantee that exponential synchronization of complex networks is achieved in the mean square. The derived conditions are closely related to the impulsive strengths, the frequency of impulse occurrence, and the coupling structure of complex networks. Numerical simulations are presented to further demonstrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.