Abstract

In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study the new classes of shock models: (i) When each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. (ii) When each shock from a nonhomogeneous Poisson processes results not in an ‘immediate’ increment of wear, as in classical accumulated wear models, but triggers its own increasing wear process. The wear from different shocks is accumulated and the failure of a system occurs when it reaches a given boundary. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behavior of the failure rate function where it is applicable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call