Abstract

We design persistent surveillance strategies for the quickest detection of anomalies taking place in an environment of interest. From a set of predefined regions in the environment, a team of autonomous vehicles collects noisy observations, which a control center processes. The overall objective is to minimize detection delay while maintaining the false-alarm rate below a desired threshold. We present joint (i) anomaly detection algorithms for the control center and (ii) vehicle routing policies. For the control center, we propose parallel cumulative sum (CUSUM) algorithms (one for each region) to detect anomalies from noisy observations. For the vehicles, we propose a stochastic routing policy, in which the regions to be visited are chosen according to a probability vector. We study stationary routing policy (the probability vector is constant) as well as adaptive routing policies (the probability vector varies in time as a function of the likelihood of regional anomalies). In the context of stationary policies, we design a performance metric and minimize it to design an efficient stationary routing policy. Our adaptive policy improves upon the stationary counterpart by adaptively increasing the selection probability of regions with high likelihood of anomaly. Finally, we show the effectiveness of the proposed algorithms through numerical simulations and a persistent surveillance experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.