Abstract

This paper is concerned with the stochastic structured tensors to stochastic complementarity problems. The definitions and properties of stochastic structured tensors, such as the stochastic strong P-tensors, stochastic P-tensors, stochastic $$P_{0}$$-tensors, stochastic strictly semi-positive tensors and stochastic S-tensors are given. It is shown that the expected residual minimization formulation (ERM) of the stochastic structured tensor complementarity problem has a nonempty and bounded solution set. Interestingly, we partially answer the open questions proposed by Che et al. (Optim Lett 13:261–279, 2019). We also consider the expected value method of stochastic structured tensor complementarity problem with finitely many elements probability space. Finally, based on the expected residual minimization formulation (ERM) of the stochastic structured tensor complementarity problem, a projected gradient method is proposed for solving the stochastic structured tensor complementarity problem and the related numerical results are also given to show the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.