Abstract

Abstract We simulated strong-motion records from the Umbria–Marche, central Italy, earthquake ( M w 6) of September 1997 using a frequency-dependent S -wave radiation function. We compared the observed acceleration spectra, from strong-motion instruments located in the near field and at regional distances, with those simulated using the stochastic modeling technique of Beresnev and Atkinson (1997, 1998), and modified to account for a frequency-dependent radiation pattern correction. By using the frequency-dependent radiation function previously obtained by Castro et al. (2006), we reduced the overall fitting error of the acceleration spectra by about 9%. In general, we observed that the frequency-dependent radiation pattern correction has a small effect on the spectral amplitudes compared with site effects, which is an important factor controlling the strong-motion records generated by the 1997 Umbria–Marche earthquake. In addition, we modeled the observed ground-motion records using the dynamic corner frequency model of Motazedian and Atkinson (2005) to reproduce the directivity effects, reducing the average error of the spectral amplitudes by 24%. We concluded that although the frequency-dependent radiation pattern correction affects the frequency content of the spectral amplitudes simulated, site and directivity effects are more relevant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.