Abstract

In this work, a combination of the spectral stochastic finite element method (SSFEM) and the time-domain spectral element method (TSEM), referred to as the stochastic time domain spectral element method (STSEM), is presented to compute the stochasticity of strain and stress of a higher-order sandwich composite beam with spatial variability in the material properties. The method proposed in this work employs the efficiencies of both SSFEM and TSEM for the uncertainty analysis of a sandwich beam. The material properties of face sheets and core are considered as Gaussian random fields, which are discretized using the Karhunen-Loéve expansion, and polynomial chaos expansion is used to represent the response quantity. A numerical example is considered for which, first, a sensitivity analysis is performed to identify the most sensitive material properties. Then, the proposed STSEM is used to demonstrate the computational efficiency and numerical accuracy in comparison with Monte-Carlo simulation. Moreover, the effect of core depth on strain and stress variability is also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call