Abstract

Variable-mass systems have received widespread attention and show prominent significance with the explosive development of micro- and nanotechnologies, so there is a growing need to study the influences of mass disturbances on systems. This paper is devoted to investigating the stochastic response of a variable-mass system subject to weakly random excitation, in which the mass disturbance is modeled as a Poisson white noise. Firstly, the original system is approximately replaced by the associated conservative system with small disturbance based on the Taylor expansion technique. Then the stationary response of the approximate system is obtained by applying the stochastic averaging method. At last, a representative variable-mass oscillator is worked out to illustrate the effectiveness of the analytical solution by comparing with Monte Carlo simulation. The relative change of mean-square displacement is used to measure the influences of mass disturbance on system responses. Results reveal that the stochastic responses are more sensitive to mass disturbance for some system parameters. It is also found that the influences of Poisson white noise as the mass disturbance on system responses are significantly different from that of Gaussian white noise of the same intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call