Abstract

Future smart grids are envisioned to have significant distributed generation penetration. In this paper, we develop a dynamic nonlinear model for the power distribution networks, in-corporating power flow equations along with load and distributed generation forecasts. As traditional state estimation approaches based on Weighted Least Squares (WLS) are inadequate in dynamic system models, we consider an extended Kalman filter (EKF) for state estimation. Unlike prior efforts, we analyze impact of communication network on state estimation process by considering intermittent measurements. The intermittent measurements denoted by packet drops are modeled as a Bernoulli random process. A stochastic analysis for boundedness of state estimation error is presented. The analysis establishes system conditions for which stochastic stability of state estimates can be assured. An upper bound on critical packet drop rate is derived. We also relate the bound on critical packet drop rate with randomness in load fluctuations. Finally, we verify our analysis by simulating a single phase radial distribution network model as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.