Abstract

The asymptotic Lyapunov stability with probability one of n-degree-of-freedom (n-DOF) quasi non-integrable Hamiltonian systems subject to weakly parametric excitations of combined Gaussian and Poisson white noises is studied by using the largest Lyapunov exponent. First, an n-DOF quasi non-integrable Hamiltonian system subject to weakly parametric excitations of combined Gaussian and Poisson white noises is reduced to a one-dimensional averaged Itô stochastic differential equation (SDE) for Hamiltonian by using the stochastic averaging method for quasi non-integrable Hamiltonian systems. Then, the expression for the Lyapunov exponent of the averaged Itô SDE is derived and the approximately necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained. Finally, one example is worked out to illustrate the proposed procedure and its effectiveness is confirmed by comparing with Monte Carlo simulation. It is found that analytical and simulation results agree well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.