Abstract

This technical note examines the stochastic stability of noisy dynamics in discrete and continuous time. The notion of moment stability in the wide sense (MSWS) is presented as a generalization of ϵ-moment stability. MSWS is intentionally not based on stochastic convergence properties, since in most practically appearing systems convergence to any equilibrium is not present. A sufficient criterion for both MSWS and ergodicity is presented for a class of systems comprising a finite set of noisy dynamical systems among which switching is governed by a Markov chain. Stability/instability properties for each separate subsystem are assumed to be quantified by a Lyapunov function candidate together with an associated growth rate equation. For the set of Lyapunov functions, a compatibility criterion is assumed to be fulfilled, bounding the ratio between pairs of Lyapunov functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.