Abstract

PurposeThe purpose of this paper is to develop a methodology for the stochastically asymptotic stability of fuzzy Markovian jumping neural networks with time-varying delay and continuously distributed delay in mean square.Design/methodology/approachThe authors perform Briat Lemma, multiple integral approach and linear convex combination technique to investigate a class of fuzzy Markovian jumping neural networks with time-varying delay and continuously distributed delay. New sufficient criterion is established by linear matrix inequalities conditions.FindingsIt turns out that the obtained methods are easy to be verified and result in less conservative conditions than the existing literature. Two examples show the effectiveness of the proposed results.Originality/valueThe novelty of the proposed approach lies in establishing a new Wirtinger-based integral inequality and the use of the Lyapunov functional method, Briat Lemma, multiple integral approach and linear convex combination technique for stochastically asymptotic stability of fuzzy Markovian jumping neural networks with time-varying delay and continuously distributed delay in mean square.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.