Abstract
The stochastic stability problem of an elastic, balanced rotating shaft subjected to action of axial forces at the ends is studied. The shaft is of circular cross-section, it rotates at a constant rate about its longitudinal axis of symmetry. The effect of rotatory inertia of the shaft cross-section is included in the present formulation. Each force consists of a constant part and a time-dependent stochastic function. Closed form analytical solutions are obtained for simply supported boundary conditions. By using the direct Liapunov method almost sure asymptotic stability conditions are obtained as the function of stochastic process variance, damping coefficient, damping ratio, angular velocity, mode number and geometric and physical parameters of the shaft. Numerical calculations are performed for the Gaussian process with a zero mean and as well as an harmonic process with random phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.