Abstract

In this work, we consider the control of discrete-time nonlinear systems over unreliable packet-based communication networks subject to random packet-dropouts. In order to mitigate the influence of the packet dropouts, the controller transmits packets containing control inputs for more than one future time instant. A suitable buffering is then applied at the plant actuator side. Since we do not assume the number of consecutive packet dropouts to be bounded, we are interested in stochastic stability of the closed-loop. For the calculation of the control inputs, we propose an unconstrained model predictive control (MPC) scheme without additional terminal weighting term. This unconstrained MPC scheme shows two significant advantages. First, we do not require the knowledge of a global control Lyapunov function, but instead only a less restrictive controllability assumption, in order to guarantee stochastic stability. Second, guaranteed performance bounds on the expected infinite horizon cost of the closed-loop can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.