Abstract

This paper studies the global exponential stability of the delayed Hopfield neural networks with both stochastic perturbations and impulse effects. By means of the Ito formula, Lyapunov-Razumikhin theorems and certain inequality techniques, some sufficient criteria are obtained which guarantee the global exponential stability of the delayed Hopfield neural networks with stochastic perturbations and impulse effects. The results characterize the intricate effects of the impulses and then can be used to estimate the feasible upper bounds of impulses. Furthermore, a numerical simulation is given to illustrate the validity of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.