Abstract

Simple SummarySynthetic biology is an emerging discipline, offering new perspectives in many industrial fields, from pharma and row-material production to renewable energy. Developing synthetic biology applications is often a lengthy and expensive process with extensive and tedious trial-and-error runs. Computational models can direct the engineering of biological circuits in a computer-aided design setting. By providing a virtual lab environment, in silico models of synthetic circuits can contribute to a quantitative understanding of the underlying molecular pathways before a wet-lab implementation. Here, we illustrate this notion from the point of view of signal fidelity and noise relationship. Noise in gene expression can undermine signal fidelity with implications on the well-functioning of the engineered organisms. For our analysis, we use a specific biological circuit that regulates the gene expression in bacterial inorganic phosphate economy. Applications that use this circuit include those in pollutant detection and wastewater treatment. We provide computational models with different levels of molecular detail as virtual labs. We show that inherent fluctuations in the gene expression machinery can be predicted via stochastic simulations to introduce control in the synthetic promoter design process. Our analysis suggests that noise in the system can be alleviated by strong synthetic promoters with slow unbinding rates. Overall, we provide a recipe for the computer-aided design of synthetic promoter libraries with specific signal to noise characteristics.The design and development of synthetic biology applications in a workflow often involve connecting modular components. Whereas computer-aided design tools are picking up in synthetic biology as in other areas of engineering, the methods for verifying the correct functioning of living technologies are still in their infancy. Especially, fine-tuning for the right promoter strength to match the design specifications is often a lengthy and expensive experimental process. In particular, the relationship between signal fidelity and noise in synthetic promoter design can be a key parameter that can affect the healthy functioning of the engineered organism. To this end, based on our previous work on synthetic promoters for the E. coli PhoBR two-component system, we make a case for using chemical reaction network models for computational verification of various promoter designs before a lab implementation. We provide an analysis of this system with extensive stochastic simulations at a single-cell level to assess the signal fidelity and noise relationship. We then show how quasi-steady-state analysis via ordinary differential equations can be used to navigate between models with different levels of detail. We compare stochastic simulations with our full and reduced models by using various metrics for assessing noise. Our analysis suggests that strong promoters with low unbinding rates can act as control tools for filtering out intrinsic noise in the PhoBR context. Our results confirm that even simpler models can be used to determine promoters with specific signal to noise characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.