Abstract

We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.