Abstract

This paper presents the large eddy simulation (LES) of turbulent channel flow using a self-energy (SE) subgrid model with coefficients determined from reference direct numerical simulations (DNSs). In contrast to standard approaches that develop subgrid models based upon physical hypotheses, in the present SE approach the model coefficients are determined from the subgrid statistics of a DNS, with physical interpretations made apostiori. This technique is applied here for the first time to wall-bounded flows, specifically channel flow. The stochastic SE subgrid model consists of a meanfield shift, deterministic drain dissipation acting on the resolved field and a stochastic backscatter force. The deterministic SE subgrid model comprises of a net dissipation representing the net effect of the drain and backscatter. We present LESs that reproduce the time-averaged kinetic energy spectra of the DNS within the resolved scales. The direction and magnitude of the energy transfers in scale space can then be determined from the coefficients of the SE subgrid model. Results are presented for friction velocity based Reynolds numbers up to Reτ = 950.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call