Abstract
This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties. A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements. A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed, by combining relevance vector machine with polynomial chaos expansions (RVM-PCE). Compared with other PCE methods, the proposed RVM-PCE is shown to be more effective in estimating failure probabilities. The sensitivity and relative influence of each random input parameter to the slope displacements are discussed. Finally, the fragility curves for slope displacements are established for site-specific soil conditions and earthquake hazard levels. The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents, and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.