Abstract
We present a new statistical approach for eukaryotic polymerase II promoter recognition. We apply stochastic segment models in which each state represents a functional part of the promoter. The segments are trained in an unsupervised way. We compare segment models with three and five states with our previous system which modeled the promoters as a whole, i.e. as a single state. Results on the classification of a representative collection of human and D. melanogaster promoter and non-promoter sequences show great improvements. The practical importance is demonstrated on the mining of large contiguous sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.