Abstract
Jump Markov linear systems are linear systems whose parameters evolve with time according to a finite-state Markov chain. Given a set of observations, our aim is to estimate the states of the finite-state Markov chain and the continuous (in space) states of the linear system. The computational cost in computing conditional mean or maximum a posteriori (MAP) state estimates of the Markov chain or the state of the jump Markov linear system grows exponentially in the number of observations. We present three globally convergent algorithms based on stochastic sampling methods for state estimation of jump Markov linear systems. The cost per iteration is linear in the data length. The first proposed algorithm is a data augmentation (DA) scheme that yields conditional mean state estimates. The second proposed scheme is a stochastic annealing (SA) version of DA that computes the joint MAP sequence estimate of the finite and continuous states. Finally, a Metropolis-Hastings DA scheme based on SA is designed to yield the MAP estimate of the finite-state Markov chain. Convergence results of the three above-mentioned stochastic algorithms are obtained. Computer simulations are carried out to evaluate the performances of the proposed algorithms. The problem of estimating a sparse signal developing from a neutron sensor based on a set of noisy data from a neutron sensor and the problem of narrow-band interference suppression in spread spectrum code-division multiple-access (CDMA) systems are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.