Abstract
In this article, the exponential synchronization of Markovian jump neural networks (MJNNs) with time-varying delays is investigated via stochastic sampling and looped-functional (LF) approach. For simplicity, it is assumed that there exist two sampling periods, which satisfies the Bernoulli distribution. To model the synchronization error system, two random variables that, respectively, describe the location of the input delays and the sampling periods are introduced. In order to reduce the conservativeness, a time-dependent looped-functional (TDLF) is designed, which takes full advantage of the available information of the sampling pattern. The Gronwall-Bellman inequalities and the discrete-time Lyapunov stability theory are utilized jointly to analyze the mean-square exponential stability of the error system. A less conservative exponential synchronization criterion is derived, based on which a mode-independent stochastic sampled-data controller (SSDC) is designed. Finally, the effectiveness of the proposed control strategy is demonstrated by a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.