Abstract
Reliable risk measurement is a key problem for financial institutions and regulatory authorities. The current industry standard Value-at-Risk has several deficiencies. Improved risk measures have been suggested and analyzed in the recent literature, but their computational implementation has largely been neglected so far. We propose and investigate stochastic approximation algorithms for the convex risk measure Utility-Based Shortfall Risk. Our approach combines stochastic root-finding schemes with importance sampling. We prove that the resulting Shortfall Risk estimators are consistent and asymptotically normal, and provide formulas for confidence intervals. The performance of the proposed algorithms is tested numerically. We finally apply our techniques to the Normal Copula Model, which is also known as the industry model CreditMetrics. This provides guidance for future implementations in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.