Abstract

The stochastic response of linear and non-linear systems to external α-stable Lévy white noises is investigated. In the literature, a differential equation in the characteristic function (CF) of the response has been recently derived for scalar systems only, within the theory of the so-called fractional Einstein–Smoluchowsky equations (FESEs). Herein, it is shown that the same equation may be built by rules of stochastic differential calculus, previously applied by one of the authors to systems driven by arbitrary delta-correlated processes. In this context, a straightforward formulation for multi-degree-of-freedom (MDOF) systems is also developed. Approximate CF solutions to the derived equation are sought for polynomial non-linearities, in stationary conditions. To this aim a wavelet representation is used, in conjunction with a weighted residual method. Numerical results prove in excellent agreement with exact solutions, when available, and digital simulation data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.