Abstract

This paper aims at introducing the governing equation of motion of a continuous fractionally damped system under generic input loads, no matter the order of the fractional derivative. Moreover, particularizing the excitation as a random noise, the evaluation of the power spectral density performed in frequency domain highlights relevant features of such a system.Numerical results have been carried out considering a cantilever beam under stochastic loads. The influence of the fractional derivative order on the power spectral density response has been investigated, underscoring the damping effect in reducing the power spectral density amplitude for higher values of the fractional derivative order. Finally, the fractional derivative term introduces in the system dynamics both effective damping and effective stiffness frequency dependent terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.