Abstract

Abstract A methodology based on the Wiener path integral (WPI) technique is developed for stochastic response determination and reliability-based design optimization of a class of nonlinear electromechanical energy harvesters endowed with fractional derivative elements. In this regard, first, the WPI technique is appropriately adapted and enhanced to account both for the singular diffusion matrix and for the fractional derivative modeling of the capacitance in the coupled electromechanical governing equations. Next, a reliability-based design optimization problem is formulated and solved, in conjunction with the WPI technique, for determining the optimal parameters of the harvester. It is noted that the herein proposed definition of the failure probability constraint is particularly suitable for harvester configurations subject to space limitations. Several numerical examples are included, while comparisons with pertinent Monte Carlo simulation (MCS) data demonstrate the satisfactory performance of the methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call