Abstract

The stochastic resonance in an underdamped quartic double-well potential with time delayed feedback is studied numerically. The signal power amplification is employed to characterize the stochastic resonance of the system. Simulation results indicate that: (i) for moderate frequency of the periodic driving, the stochastic resonance is decreased monotonically by increasing the delay time, but at high frequency, the reverse-resonance is induced to transform into a stochastic resonance by time delay; (ii) the damping coefficient has a critical value for which the stochastic resonance is optimum; (iii) a stochastic multi-resonance emerges when the signal power amplification is a function of the driving frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.