Abstract

In this article, we investigate the stochastic resonance (SR) effect in a finite array of noisy bistable systems with nearest-neighbor coupling driven by a weak time-periodic driving force. The array is characterized by a collective variable. By means of numerical simulations, the signal-to-noise ratio (SNR) and the gain are estimated as functions of the noise and the interaction coupling strength. A strong enhancement of the SR phenomenon for this collective variable in comparison with SR in single unit bistable systems is observed. Gains larger than unity are obtained for some parameter values and multi-frequency driving forces, indicating that the system is operating in a non-linear regime albeit the smallness of the driving amplitude. The large SNR values observed are basically due to the fact that the output fluctuations are small and short lived, in comparison with their typical values in a linear regime. A non-monotonic behavior of the SNR with the coupling strength is also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.