Abstract
We demonstrate the phenomenon of stochastic resonance in a nonlinear chemical reaction. The term “stochastic resonance” (SR) denotes the detection of a weak periodic signal in a noisy system displaying a threshold. If the sum of the periodic signal and the noise amplitude crosses the threshold, an output pulse is triggered. At an optimal noise amplitude the distribution of pulse intervals as well as the signal-to-noise ratio will pass through a maximum. In the continuously stirred tank reactor (CSTR) experiments we superimpose a periodic flow rate signal on an excitable focal steady state located near a Hopf bifurcation in the Belousov−Zhabotinsky (BZ) reaction. In the Showalter−Noyes−Bar-Eli model of this reaction we vary the perturbation frequency and amplitude as well as the pulse length of the applied noise to elaborate the optimal conditions for stochastic resonance to occur in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.