Abstract
Vibration signals are widely used for bearing fault detection and diagnosis. When signals are acquired in the field, usually, the faulty periodic signal is weak and is concealed by noise. Various de-noising methods have been developed to extract the target signal from the raw signal. Stochastic resonance (SR) is a technique that changed the traditional denoising process, in which the weak periodic fault signal can be identified by adding an expression, the potential, to the raw signal and solving a differential equation problem. However, current SR methods have some deficiencies such us limited filtering performance, low frequency input signal and sequential search for optimum parameters. Consequently, in this study, we explore the application of SR based on the FitzHug-Nagumo (FHN) potential in rolling bearing vibration signals. Besides, we improve the search of the SR optimum parameters by the use of particle swarm optimization (PSO). The effectiveness of the proposed method is verified by using both simulated and real bearing data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.