Abstract

Based on the output saturation of classcial bistable stochastic resonance (CBSR), a new type of piecewise nonlinear bistable stochastic resonance (PNBSR) system is constructed. The mean signal-to-noise ratio gain is regarded as an index to measure the stochastic resonance phenomenon. The laws for the resonant output of piecewise nonlinear bistable system governed by l, c, a, b and D of Levy noise are explored under different characteristic index α and symmetry parameter β of Levy noise. The results show that the output of PNBSR system has increased 4 dB by comparing with the output signal-to-noise ratio of CBSR system. And the stochastic resonance phenomenon can be induced by adjusting the piecewise nonlinear system's parameters under any α or β of Levy noise. The interval of the parameters of system which induces good stochastic resonance is roughly the same. And the output signal waveform of resonance is very similar to the input signal waveform, which has some reference value for the signal recovery. Moreover, we can find the good stochastic resonance interval of the system parameters do not change with D of Levy noise under the different noise intensity D of Levy noise. On the basis of this, adjusting the intensity amplification factor D of Levy noise, which induces good stochastic resonance, and the interval does not change with α or β. At last, the piecewise nonlinear bistable system is applied to detect bearing fault signals, which achieves better performance compared with the classical bistable system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call