Abstract

In the life-cycle cost analysis of a structure, the total cost of damage caused by external hazards like earthquakes, wind storms and flood is an important but highly uncertain component. In the literature, the expected damage cost is typically analyzed under the assumption of either the homogeneous Poisson process or the renewal process in an infinite time horizon (i.e., asymptotic solution). The paper reformulates the damage cost estimation problem as a compound renewal process and derives general solutions for the mean and variance of total cost, with and without discounting, over the life cycle of the structure. The paper highlights a fundamental property of the renewal process, referred to as renewal decomposition, which is a key to solving a wide range of life cycle analysis problems. The proposed formulation generalizes the results given in the literature, and it can be used to optimize the design and life cycle performance of structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.