Abstract

Inventory management systems and dynamic reliability measures and controls remain challenging at every stage, especially when time variances and operating conditions are considered. An inventory management system must maintain its adeptness over time while coping with the uncertainty of inventory flow. Unexpected delays during inventory movement can harm the reliability and robustness of the entire system. This paper introduces a method of quantifying the reliability of an inventory management system. Also, a novel, reliability-based robust design optimization model has been developed to optimally allocate and schedule time while considering uncertainty associated with inventory movement. The processes involved include purchasing, shipping, receiving, tracking, warehousing, storage, and turnover. A case study of a furniture company in Saudi Arabia is presented to demonstrate the efficacy of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.