Abstract

Mitigating water contamination, improving water security, and increasing sustainability involve environmental awareness and conscientious decision-making by denizens and stakeholders. Achieving such awareness requires visually compelling geospatial decision-making tools that take into account the probabilistic and spatially distributed nature of water contamination. Inspired by the success of weather maps, this paper presents a novel STochastic Reliability-based Risk Evaluation And Mapping for watershed Systems and Sustainability (STREAMS) tool that produces and effectively communicates the risk of water contamination as maps. STREAMS is integrated with ArcGIS geoprocessing tools and uses physics-based reliability theory to compute the spatial distribution of risk, which is defined as the probability of exceeding a safety threshold of water contamination within a watershed. A quantitative analysis of the efficacy of mitigation strategies is conducted by estimating risk reduction from best management practices throughout the entire watershed. Two case studies at different spatial scales are presented, demonstrating STREAMS application to watersheds with varied properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call