Abstract

We study relativistic particles undergoing surfing acceleration at perpendicular shocks. We assume that particles undergo diffusion in the component of momentum perpendicular to the shock plane due to moderate fluctuations in the shock electric and magnetic fields. We show that dN/dE, the number of surfing-accelerated particles per unit energy, attains a power-law form, dN/dE \propto E^{-b}. We calculate b analytically in the limit of weak momentum diffusion, and use Monte Carlo test-particle calculations to evaluate b in the weak, moderate, and strong momentum-diffusion limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.