Abstract

A reconstruction methodology based on threshold energy based energy minimization (TA) and different-phase-neighbor (DPN)-based pixel swapping is presented. The TA method uses an energy threshold rather than probabilities as an acceptance criteria for annealing steps. The DPN-based pixel selection method gives priority to pixels which are segregated from clusters instead of random selection. An in-house solver has been developed to obtain two-dimensional reconstructions of heterogeneous two-phase mediums. Compared to conventional simulated annealing with random pixel swapping, the proposed method was found to achieve an optimal structure with up to an order of magnitude reduction in energy. When selecting a threshold tolerance value, the proposed method showed a 50% improvement in convergence time compared to conventional simulated annealing with random pixel swapping. The improved algorithm is used to study the effect of multiple correlation functions during the reconstruction. It was found that a combination of two-point correlation function and lineal path function for both phases results in most accurate reconstructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.