Abstract

We study the problem of receding horizon control for stochastic discrete-time systems with bounded control inputs and incomplete state information. Given a suitable choice of causal control policies, we first present a slight extension of the Kalman filter to estimate the state optimally in mean-square sense. We then show how to augment the underlying optimization problem with a negative drift-like constraint, yielding a second-order cone program to be solved periodically online. We prove that the receding horizon implementation of the resulting control policies renders the state of the overall system mean-square bounded under mild assumptions. We also discuss how some quantities required by the finite-horizon optimization problem can be computed off-line, thus reducing the on-line computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.